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IGNITION BY A HEATED PLATE 

A. M. Grishin  

Inzhenerno-  Fiz icheski i  Zhurnal ,  

UDC 536.468 

gol .  10, No. 4, pp. 

Using the Shvets method, a solution is found to the problem of ignition 
of a reacting gas by a heated plate, when the gas is at rest and when 
it is moving due to forced or free convection. Analytical expressions 
are obtained for the ignition conditions. 

We cons ider  a semi- inf in i te  space ,  full of reac t ing  
gas ,  bounded on the left by a plate whose t e mpe ra tu r e  
is held constant  T = Tc, the initial t e m p e r a t u r e  of the 
reagent  being T O << T c. We a s sume  that a reac t ion  of 
ze ro  o r d e r  occu r s ,  the the rmophys ica l  coeff ic ients  
being constant .  We set  ou r se lves  the p rob lem of 
de termining  the ignition lag for  a reac t ing  s y s t e m  of 
finite d imensions .  A s i m i l a r  p rob lem is of in te res t  
in the theory  of ignition of reac t ing  subs tances  and 
has been invest igated qual i ta t ively in [1, 2], and 
numer i ca l ly  in another  formula t ion  in [3,4] .  Math- 
emat ica l ly ,  the p rob lem reduces  to solution of the 
equation 

020 O0 
-- - -expO (1) OP O'~ 

with the boundary and initial conditions 

o(o,~)=o, o(~,~)=--oo, e(z,O)=--Oo. (2) 

In de r iv ing  (1) we used the F rank-Kamene t sk i i  
expansion [5] fo r  e x p ( - E / R T ) .  Since ignition occu r s ,  
as  machine calculat ions  for  an infinite cy l inder  have 
shown [4], in a thin l aye r  at the heated sur face ,  it 
is appropr ia te  to in t roduce the the rma l  boundary  
l aye r  th ickness  A(T). Then conditions (2) take the 
f o r m  

o(o,~)=o, o(A,,)=--Oo, A(o)=o. (3) 

We shall  solve the boundary p rob lem (1)-(3) by 
the Shvets method [6], which is known for  its good 
convergence  and s impl ic i ty .  Introducing the new 
independent var iable  x = z /A,  and using the resu l t s  
of [7], we may show that fo r  ignition of a l aye r  of 
reac t ing  substance ,  exp 0 ,  does not differ  much on 
the average  f r o m  exp(1 - 00x ), and so it is  natural  to 
choose as a f i r s t  approximat ion  the prof i le  01 = 1 - 
- 00 x, by subst i tut ion of which on the r ight  side of 
(1) we find, taking account  of (3), that  

e A ~ Oo x 3 AA 
02---- ~ [1 - - exp( - -Oox) ]+  6 

_xloo+eA~(l--~) ooas ] 
+ - - U -  " 

(4) 
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By satisfying (4), according to (6), with the con- 

00 = 0, we obtain for A(T) a differential dition ~x ~=i 

equation of the first order, from whose solution, 
taking into account the last of conditions (3), we have 

A =  

0o /exp [ 6e(1 - - 7 - -  70o)z 
= 0 O / e ( 1  _ u  ) 0~ ~ j - - l } .  (5) 

In the absence of heat sources [6] A = 2.45 ~r~. We did 
not manage to find further analytical approximations 
for 0 in view of the difficulty of integration. 

The ignition process may be represented schemat- 

ically, according to [1,4], in this way: the reacting 
mixture is first heated, then a maximum temperature 

is created, which moves right up to a certain point 
when the rate of motion of the maximum falls to zero. 

The time of creation of the maximum temperature 
corresponds to the end of the heating time, while the 
time when the rate of motion of the maximum tempera- 
ture falls to zero is the explosion point. The maximum 
temperature increases during its motion, and attains 
very large values by the time of ignition. Analytically 

the explosion conditions may be written as 

OoxO X=xm=O' dXmd,~ r (6) 

By satisfying (4) with conditions (6), we obtain a 

system of two nonlinear equations for A and x m, 
solution of which gives x m = const and A = ~. Then 
we obtain the maximum value 02(Xm) = ~. It is easy 
to see that A = ~ when T b = ~. Generally speaking, 

the reacting system is ignited during the last time 
interval, and T b = ~ is evidence of the crudeness of 

the second approximation 02 (x, T). It is important, 
however, that the quite crude solution (4) correctly 
reflects the essence of the phenomenon. Since the 

heating time, according to [4], differs little at large 

O0 = 0 ,  6 from the time to explosion, the condition --0-x-- x=0 

given by Zel'dovich [8], may be considered as an 
approximate ignition condition which is more accurate, 

the larger 00. By satisfying (4) with the Zel'dovich 

condition [8], we find A = A0, giving a heating time 

Ao= Oo V30o/e[(Z+ V)0o--3(1 -",)1, (7) 
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Variat ion of (LC t,"~.--~, ao and Heating Time ~h as a Function of 0 o 
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and with the aid of (5) and (7) we obtain the heat ing 
t ime 

O~ In 20o(1 --~/) (8) 
~h = 6e(l _ v_VOo) [(2 + V) 0o-- 3(1 --~,)] " 

A reac t ing  s y s t e m  of finite s ize  may evidently be 
ignited at a given initial t emPera tu re  T 0, if i ts d im-  
ens ionless  cha r ac t e r i s t i c  s ize  ~ > A I. Thus,  with 
the help of the solution to the p rob lem of ignition of 
a semi- inf in i te  reac t ing  space,  we may es t imate  the 
ignition condit ions and the heating t ime of a reac t ing  
substance enclosed between two para l le l  plates ,  whose 
t empe ra tu r e s  a re  T c and ~ .  The table gives  values 
of W~., V~,1, A0 and T h for  a number  of values of 
00. 

We found the values of ~ with 1 - 01 -< 6 using 
the s ta t ionary  t h e o r y  of the rma l  explosion [5], and 
values of ~ for  00 > 6 were  taken f r o m  [7]. The 
quanti ty ~ was de te rmined  f r o m  the appropr ia te  
fo rmula  of [2]. It is  in teres t ing  to note that,  in spite 
of the c rudeness  of 0 l, there  is good ag reemen t  of 

and A 0 at la rge  00, and that f ~ , ,  5~/~,l,l, A0 increase  
l inear ly ,  in the main,  with inc rease  of 00. 

The p rob lem of ignition of a reac t ing  liquid in a 
fo rced  convect ive flow is connected with the p rob lem 
of f lame s tabi l izat ion by means  of smooth su r faces  
and has been examined in [9, 10]. The p rob lem was 
solved in [10] for  some sPecial  cases  on a computer ,  
allowing for  var ia t ion of v i scos i ty  and densi ty with 
t empera tu re .  In this paper  the p rob lem is solved by 
the Shvets method [6], us ing the same  values of 
t he rmophys ica l  constants  as in [10, 11]. 

Let there  be a s t r e a m  of v iscous  reac t ing  gas 
with t empera tu re  T O << T c flowing over  a plate of 
length l and constant  t empera tu re  T c. We shall  
a s sume  that the flow veloci ty at ~ is cons iderab ly  
less  than that of sound. We shall  neglect  burn-up  
of the reagent ,  an assumpt ion  which, accord ing  to 
[10], does not give a l a rge  e r r o r ,  even fo r  second-  
o r d e r  reac t ions .  For  a given veloci ty u,o we find the 
plate length for  which ignition of the reac t ing  gas 
occurs .  Mathematical ly ,  the p rob lem reduces  to 
solution of the sys t em of equations 

o (p v~___L) + o (p v,,) _ o, (9) 
Oxi Oyl 

(lO) 

pcp(v:  07" v 5T ~ =  0 ~, 37" 

+ qko(cop)"exp ( - -  E ) (11) 

with the boundary  conditions 

T(q ,  0)=To,  T(xl, oo)=T0, v,(x,, 0 )=  

= v~,(x,, O) = O, vx(xl, r u.~, vy(xx, oo) = 0. (12) 

We note that f r ic t ional  heat is neglected  in (11), as 
in (10). Applying the Dorodni tsyn t r ans fo rma t ion  [12] 
to the s y s t e m  (9)-(11) 

Yi 

7,7 (13) 

e l iminat ing vy,  and reducing the sy s t em of equat ions 
to d imens ion less  fo rm,  taking into account  the F r a n k -  
Kamenetski i  t r ans fo rma t ion  for  exp(-E/RT) [5], we 
have 

Y 
Ou Ou y Ou O~u -- u - -  ---~xdy,  (14) 

Oy 2 Ox Oy 
0 

020 = P  u 
Oy ~ Ox Oy --~x d y - - a e x p O .  (15) 

0 

The boundary  conditions for  the s y s t e m  (14)-(15) have 
the f o r m  

0(x, 0 ) = 0 ,  0(x, A1)=--0o ,  u(x, 0 ) = 0 ,  

u(x, A1)= 1, a , ( 0 ) = 0 .  (16) 

We take 0 i = - 0 0 y / A  l as  the f i r s t  approximat ion  fo r  
the d imens ion less  t emPera tu re .  Substituting 01, and 
the value of u found in [6], in the r ight  side of  (15), 
and in tegrat ing the resul t ing  express ion ,  allowing 
for  the f i r s t  two conditions of (16), we obtain the 
second approximat ion 

r,_oxp(_ oo.11 

I 

P Oo [ b& 2 A, 1 x -  1 
4 ) -  

(17) 
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YTx-~ ( A1 2 x- ,  ) _  
32256 ~ 5 

t 

Al O~ + 9~ L 36 hi 

1 ) 2xl)]}  ,17, 
4 x-1 32 256 ~-1 5 cont 'd  

Following [6], we obtain the different ial  equation 
for  the de te rmina t ion  of A l, 

( ) (x3  Px x3/~ w dw_ _ p w  

36 16128 dx 48 

13440w �9 =x3 I i + a ( 1 - - y ~ y O o ) w 2 / 3  i O ~  " (18) 

If E = ~, c~ = 0, and we have an equation for the 
thermal boundary layer in the absence of reactions 
[6]. Dropping the terms in (18) with small coefficients 

1/16128, 1/13440, I/0~, and solving the resulting 

linear differential equation, we find 

A~ ~ ( 48/P) '/a V-x. (19) 

Express ion  (19) ag rees  with the co r re spond ing  e x p r e s -  
s ion of [6], within the l imits  of the approximat ions  
made.  This is in a g r e e m e n t  with the resu l t s  of [10], 
accord ing  to which the boundary  l a y e r  th ickness ,  with 
the reac t ion  taken into account ,  d i f fers  little f r o m  the 
th ickness  of the the rma l  boundary  l aye r  when reac t ions  
up to the ignition point a re  not allowed for .  A more  
exact  invest igat ion,  taking the d i sca rded  t e r m s  into 
account ,  indicates ,  in ag reemen t  with [10], that  ha 
the absence  of reac t ion  (~ = 0) the boundary  l aye r  is 
th inner  than the t he rma l  boundary  l aye r  when heat 
r e l ea se  f r o m  the reac t ion  (ce ~ 0) is allowed for.  This 
is eas i ly  ver i f ied  by applying Chaplygin ' s  t h e o r e m  
concern ing  different ial  inequal i t ies  to (18), allowing 
fo r  the las t  of conditions (16). The solution (19) could 
be improved  accord ing  to the method of [13], but 
such improvemen t  would not be worthwhile,  s ince 
there  is substant ia l  e r r o r  in the m e a s u r e m e n t  of E. 
As the ignition condition we shall  take,  as  before ,  the 
Zel'dovich [8] condition, which in this case means 
that the heat flux from the heated plate equals zero at 
a certain x = x0, i . e . ,  from x = x 0 onwards, the plate 
is not heating the gas, but, on the contrary, the 
reacting gas is heating the plate, owing to the heat 
released in the reaction. Satisfying (17) with the 

0 0 = O, and solving the result-  ignition condition -~y y=0 

ing equation and (18) relative to AI, we have, taking 
(19) into account, 

x o = O. O0126189 (80P--  3) O~/a p,/3. (20) 

Using (20), we can find the value of l co r respond ing  
to ignition of the reac t ing  mix ture  at a given point on 

the plate.  Knowing l, we can e s t ima te  the dwell t ime 
t ,  = /x0/u~o of a liquid par t i c le  r equ i red  for  ignition. 
If x 0 > 1, ignition of the reagent  does not o c c u r  on 
the plate,  i . e . ,  (20) can se rve  as the ignition con-  
dition. Compar i son  of (20) with the co r r e spond ing  
fo rmu la  of [8] has  shown that the two a r e  qual i ta t ively  
equivalent  and much the same  quant i ta t ively.  The 
ignition condition will be more  accura t e  if the F r a n k -  
Kamenetski i  t r an s fo rma t ion  for  exp(E/RT)  [5] is not 
used.  Fo r  a f i r s t - o r d e r  reac t ion  we may  s imi l a r l y  
obtain 

lx o = [0.00126189 (80P-- 3) cpu= (T c -- To) S] ><. 

Tc E 

+V:o (21) 

and fo r  a s e c o n d - o r d e r  reac t ion  we have,  c o r r e s p o n d -  
ingly,  

0.00126189 (80P--  3) CpU~ (To-- To) 2 
lx~ = qc 2 ,oo-k o P4/~T o [Ei (-- E/RT o) --  Ei (-- E/RTc)] 

(22) 

Values of x0 found f r o m  (22) agree  in o r d e r  of m a g -  
nitude with the numer i ca l  r e su l t s  of [10]. There  is 
no difficulty,  in pr inciple ,  in examining ignition by 
the Shvets method [6] al lowing for  var ia t ion  of r e -  
agent  concent ra t ion ,  but the computa t ions  are  onerous  
and the final fo rmulas  unwieldy. 

In p rac t i ce  any ignition p r o c e s s  is connected  with 
f ree  convect ion of the reac t ing  subs tance .  We shal l  
examine ignition by a heated ver t i ca l  plate at t e m -  
pe ra tu re  T c washed by a v iscous ,  i ncompres s ib l e  
r eac t ing  liquid, whose t e m p e r a t u r e  is T o << T c. We 
a s sume  that  the the rmophys ica l  p rope r t i e s  a re  con-  
stant,  and that a z e r o t h - o r d e r  reac t ion  occu r s .  Math-  
emat ica l ly ,  the p rob lem reduces  to solution of the 
s y s t e m  of equat ions 

Ov~ + 0%_ = O, (23) 
Oxl @1 

OVx OVx 'V 02v': 
vx Oxl -}- vu Og--~- = c)y~ q- g[~ (T --To), (24) 

v 07' OT 
P0%\ x c)xl + % ~ )  = 

a2T 
= k ~ + qk o exp(--E/RT) 

with boundary  condit ions 

(25) 

T(xi, O)=T~, T(xl, ~ ) = T  O , v~(x~, 0 ) =  

=-vyfx~, O)=O, v~(x~, ~ ) = v ~ ( x : ,  ~ ) = 0 .  (26) 
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The coordina te  origin is located at the lower  edge of 
the plate,  the x axis being along the plate,  and the y 
axis  pe rpend icu la r  to it. El iminat ing Vy f r o m  the 
s y s t e m  (23)-(25) and reducing the s y s t e m  to d imen-  
s ion less  fo rm,  taking into account  the F r a n k - K a m e n -  
etskii  t r ans fo rma t ion  [5] for  e x p ( - E / R T ) ,  we obtain 

Oi I ' O~ 0il ~ ~1I - -  0o - -  0, {27) 
0 

On' 0g On - - ~ - d n  - a e x p 0 .  {28) 
0 

The boundary  condit ions fo r  the system, of equat ions 
(26), (27) have the f o r m  

o (~, o) = o, 0 (L A~) = - -  0o, 

U(~, 0 )=U(~ ,  As)=0 ,  a~.(0)=0. (29) 

We take the f i r s t  approximat ions  for  0 and U in the 
f o r m  

Ox ~- --0o~/A~, U~ --- 0o(~/6 A~ --~1/2 + A,/3)~l. (30) 

Substituting (30) into the r ight  side of (28) and in teg ra -  
t ing the resu l t ,  taking account  of boundary  condit ions 
(29), we obtain the second approximat ion  

+ 

ah~ [ 1 - - e x p  ( - -  O~ ]] 
0~ = 0---~- \ A~ / l  + 

P0o2~l,q ' (. il~ il + 1 ) 
A~ 240 h 2 40 A~ - - ~  - -  

A~ 0~ 48 
(31) 

Following [6], we get the different ial  equation for  
de termining A~(~): 

11/90~ a ~ - ~ - ~ - =  0o+ a(1 --V--W0o)02 A~ . (32) 

In tegra t ing (32), and taking into account  the las t  of 
condit ions (29), we have 

g = -  I1P07~ f a A ~ ( l - - v - - V 0 o )  
480a * (1 - -  V - -  ~0o)~ ( 0o ~ 

- - l n [ 1  + a A ~ ( 1 - - y - - Y O ~  
Oo ~ 

(33)  

Satisfying the ignition condition a,0_@/ = 0, we obtain 

48 d~ 0~ w o - - l + y ) - - O  o. (34) 

Eliminat ing Az f r o m  (32) and (34), we find the quantity 
A t = A0Z, co r respond ing  to the ignition condition, 

Ao~ = 16 0oS/a(110 o - -  16 + 167 + 5700), (35) 

Substituting (35) into (33), we obtain the quantity ~ = 
= ~0 co r respond ing  to ignition 

11P 0 ~  / 16 (1 --  y - -  y0o) 
480a2(1 - -y - -~0o)  s [ 110 o - 1 6 +  16y+5u o 

16(1 - v - V0o) 
- - I n  [ 1 + 110o-~ ~ - ~  1-~4 ~-5.r ] / . (36, 

Knowing T c, T~, and the physical and kinetic con- 
stants, we can easily find, using (36), the dimension- 
less distance from the edge of the plate at which 
ignition of the reacting liquid takes place. For a 
nonreacting liquid E = ~o, and it follows from (36) 

that ~0 = Go, i.e., in this case there is no ignition. 
Therefore, if the dimensionless length of the plate is 
greater than ~0, ignition occurs, while in the opposite 
case there is no ignition of the reacting liquid on the 
plate surface�9 

NOTATION 

0 = (T - Tc) E/RT2c--dimensiooless temperature; E--activation 
energy; R-universal gas constant; Tc--temperature of heated plate; 
q--thermal effect of reaction, -% = (To -- T e) E/RTcl--dimensionless 
initial temperature and temperature of reacting liquid outside boundary 
layer; T0-initial temperature of liquid and temperature outside bound- 

Yt 

I/~'~" f P 1 / koE  / E '~ ary layer; ~ = x # ,  y = - 7 7 - -  v'~o dyl, z = x, l/ ~ e x p ~ - ~ - ~  ], 
0 

= xx (g ,3 RT~IE ,,~)l/a ~ = Yz (g ~ RT~/E ,~)t/3 --dimensionless 
coordinates; l--characteristic dimension; xl, yt--dimensional coordi- 

nates; k0-preexponent; k--thermal conductivity; l / ~ =  l_~ [ qEk a . 
T ~  ~R 

�9 exp (-- E ~ ~l/2_dimensionless characteristic dimension in [7]; 
~, RTc } ] 

i/'g-*-,--critical value of tflg-, at which a real solution of equation (2i) 
of [7] still exists; e,--limiting real solution of (2i) of[7]; Re--Reynolds 
number; A, &l, &z -dimensionless thermal boundary layer thickness 
for a liquid at rest, forced convection, and free convection, respect- 

ively; ~. qtgk~ exp [-- E__.~ --dimensionless time. t-time; 
cp ?o RT~ ~ "Rrc / 

vii-heating time; rb-ignition time lag; Cp-speeific heat at constant 
pressure; P0-density at T = To; P-Prandtl number; a -  qkocoPlE 

u ~cpRT2c " 
�9 exp \(-- E__E__/~Tc ) --dimensionless plate length; w = A~; -~ = exp (-- 0o); 

{ e___L__~I/3 / E ~iz3 

dimensionless longitudinal and transverse flow velocity components for 
forced and free convection, respectively; c0-initial concentration; 

qkoE [ E ",~ ~ 2/3 ~-volume expansion coefficient; a = -iRT~ k ~ )  " 

( E )  dA 
�9 exp - - ~  -dimensionless parameter; A = ~ ;  AI"- dx 

dA2 
A~ == ~ ; .%, ~o --dimensionless distance from edge of heated 

plate at which reacting liquid ignites, for free and forced convection, 
respectively; g-acceleration due to gravity; n--order of reaetion~ ~- 
viscosity; v-kinematic viscosity at T = To. 
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